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Perspective

When | was a student it was fashionable to give courses called
“Elementary Mathematics from a Higher Point of View” ... . But
what | needed was a few courses called “Higher Mathematics from
the Elementary Point of View".

Joel Franklin

Goal Give a feeling for the way a mathematician thinks about and
uses the abstract structures and tools in understanding problems
in geometry and analysis applied to the analysis of image data.



View frc_)m _above: Inverse Problems,
Regularization, Data Models and Images

X Object (Hidden State)

P d eall Projection (Ideal Measurement)

Preal
| i Image (Infinite Dimensional)

D l Discretization (measurement devices produce finite dimensional measurements)

| Image (finite Dimensional)
fd

Noise N l Corruption (real measurement devices introduce noise)

| d Image Data (finite Dimensional and Noisy)
n

We will focus on the noise removal and the reconstruction of hidden
information by the use of prior information about the object and/or
the infinitely resolved image: We will be interested in the inversion of
one of the following three equations.

Ifdn — I:)real (X) —{—I’]
ltan= D(lig) +n
ltan = lta +N



Where we start

First we simplify notation:

d is the measured image data (ltgn on the previous page)

u is the object, reconstructed image or denoised image ... (X, lig, ltd,
ltgn previously). The space of all such u will be denoted by B and
will in general be a Banach space.

P is any measurement or projection operator

With this notation we will be mostly concerned with equations of
the type:

muinF(u) = muin||Pu—d||+R(u)

R(u) is the regularization term incorporating prior knowledge.

Note: By differentiating (Gateaux of Fréchet) F, we can turn a
minimization problem into a PDE:

minF (u) = u; = —DF(u)
u
where DF is the derivative of F.

What makes these minimization problems
mathematically interesting?

Answer: u lives in an infinite dimensional space



Banach Spaces, Compactness, Convexity,
Coercivity, and all that ...

In this section, | give an idea of ...

e Infinite dimensional = convergence and topologies “bifurcate” —
geometry of Banach spaces is highly nontrivial.

e Convexity gives us existence; Strict convexity yields uniqueness.

e Lower semi-continuity plus coercivity plus the weak topology plus
reflexivity yields existence of minimizers.

e Derivatives still work in Banach spaces.



Banach Spaces and their Dual Spaces

Banach Space A Banach space B is a vector space with a norm that
makes it into a complete metric space.

Dual Space The dual space B* is simply the space of all bounded
linear maps | : B — RR.

Hilbert spaces are special Banach spaces: Angles are defined,
all separable Hilbert spaces are isometrically isomorphic, L? and
I are both Hilbert spaces, Hilbert spaces are reflexive ...



Compactness

For our purposes, a set is compact if every sequence of points in the
set has a convergent subsequence.

In finite dimensional spaces, compact = closed and bounded.
In infinite dimensions this is NOT so — the unit ball (in fact any
closed ¢-ball) is NOT compact.



Convexity

C\
\
Supporting Hyperplanes

A function is convex if for all u; and U, and every 0 < a < 1,

y
oy}

Gf(ul) + (1—G)f(U2) < f(GU1+ (1—G)U2).

It is said to be strictly convex if the above inequality is strict. (The
graph of the function is nowhere flat).

Convex functions are to optimization what linear systems are to
differential equations.



Lower Semi-Continuity

V4

A function f is Lower Semi-Continuous (l.s.c.) if

f(Ug) < liminff (u;)

i—00

for all sequences u; — Up.



Convergence

e Strong Convergence: Ui — Ug if ||Uj — Ug|| — 0 as i — oo.
e Weak Convergence: uj — Up if 1(uj) — I(ug) as i — oo for all | € B*.
w

The primary practical reason for using other forms of
convergence is that though one may lose the nice properties of
a metric space, the weak topology recaptures compactness for
closed and bounded sets (there are details!).



Example: B, the space of L° functions on a measure space (Q, )

lull = ( /. |u<x>|2du<x>)%

Due to the Riesz Representation theorem, we can express the dual
space B* as all linear functionals of the form:

~ ([ a09utaueo
Strong Convergence

U; — Ug in the strong topology if

I|m||u.—uo||—I|m </|u — Up(X)|*dp(x )) —

Weak Convergence
U; — Ug in the weak topology if

limlg(ui) —lg(ug) = Ilm/Qg(x)(ui(x)—uo(x))du(x):0

|—00 |—00

for all Iy € B* (or equivalently, for all l4,g € B).
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Coercivity

A function F mapping elements from a Banach space B to R is
coercive if the level sets are bounded or equivalently if F(u) — o as
[Jul[ = 0

Differentiability and Subgradients

of =[-2, 2]

Derivative ) _
Local Subdiferential

Locally Linear Derivatives are local linear approximations: this
works in infinite dimensional spaces as easily as in one dimensional
spaces. Suppose that:

F:RS — R?

Then, DF will be a linear operator from R® to R? and can be
represented by a matrix with 3 columns and 2 rows.

Derivatives and the Dual Space If F:B — R then DF is in the
dual space B*.
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Infini]:e dime_nsions iIs where the zoo itself
gets Interesting

property finite dimensional infinite dimensional
- all  linear maps | bounded linear
continuity ] .
continuous maps continuous
the unit ball is | the unit ball is NOT
compactness
compact compact
man different
All norms are y
norms . norms on the same
equivalent
space
topologies Strong = Weak = | Strong # Weak #
Weak* Weak*
sequences
completely
>equences characterize need nets
topology
not necessarily

linear subspaces

always closed

closed
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Culmination of the previous concepts: What
we need for existence

When can we find a minimizing u*? i.e. when can we find a U* such
that

F(u*) =F =infF(u).
u
suppose that:

Al B =B" (= bounded sets are compact under weak convergence)
A2 F is coercive (level sets are bounded), and
A3 F is weakly sequentially lower semi-continuous,

then we may follow the steps:

1 Note that there is a sequence u; such that F(u;) — F.
2 Since F is coercive, the level sets of F are bounded.
3 Under the weak topology, bounded sets are sequentially compact

SO there is a subsequence of u; call it u;, and a point U* such that
Ui, —w U* as N — oo,
4 We use the weak sequential lower semi-continuity to obtain that

F(u*) < liminfF (u;,)

n—oo

5 This implies that F(u*) =F.

Consequently, if any particular F satisfies A1, A2, and A3, we
automatically have the existence of a minimizer U*.
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Also: Uniqueness

Strict Convexity If F is strictly convex, any minimizer is unique: if
not then uj # u; and
F*<FQAuUi+ (1—-Mub) <AF(u;) +(1—-AMNF(u}) <F*or F*<F*.
Practical Uniqueness
1 How big is the bounding ball in which the minimal solutions
live?
2 How big does this bounding ball get as we look for all solutions
with F values within € of F*7
3 How big is the set of u satisfying Fj(u) < F*+ € for some d
within & of the measured data d.

What we need: Stability

Key question How big are the level sets of F at or near the minimal
value of F?

If F(u) is convex and the subdifferential at a minimizing u* contains
an € ball around the origin of the dual space B* then we know that at
least our instability is no worse than 1/¢.
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Before we move on to examples ...

If you are wishing | had never opened your eyes to all the things that
are needed to understand “easy” things like minimization of
functions, you might take comfort from:

Everyone knows what a curve is, until he has studied enough
mathematics to become confused by the countless exceptions.

Felix Klein
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Example: BV Functions and Total Variation
Minimization

Intuition | give a few insights into what TV minimization is all about

Data | present an example of the use of TV minimization for
radiographic data. Inspired by the need to invert sparse
radiographic data, we are interested in the following equation:

Uoptimal = argminF (u) = argmin (||Pu—d||2+/ |Du|>
u u Q

We now explain why this is appropriate.
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We consider the (1-dimensional) continuous case:

we compute F(u) = [4|0u|Pdx

sope=s

i

~——— graphofu

AX

x)P

F(u) = SP(AX) = Ax)pl = dP (a7

(p>1) Flu) - 0
(p=1) Flu)=
(p<1) F(u) — 00

Moral of the Story:

e For p > 1 discontinuities are avoided ... smooth u preferred,

e For p < 1 discontinuities cost nothing ... step U preferred,

e BUT for p=1 only the variation or jump magnitude “counts”

bias towards either smooth or step!

, NO
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Aside: Lagrange Multiplier Picture

Problem Maximize f(x) subject to g(X) =c.
Multiplier method Find stationary points of L(X,A) = f(x) +Ag(X)
Do ... solve DL(x,A) =Df(x)+ADg(x) =0

A picture:
Gradientofg A

Gradient of f
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Aside: BV Functions

We can define a space of functions whose norm is based on the
measure we introduced to look at edges, F(f) = [o|Of|dp.

The space will be those f : RN — R such that

f € L1(Q) and / Df| < o0
Q

where we define [, |Df| when f ¢ C}(Q) by

/ IDf| = sup{/ fdiv(g)dx:g e CHQ,RY),|lg(x)| <1 Wx e Q}
Q Q
In this case we define the BV norm by:

1 fllew = 1flls+ [ IDF

The space of functions f such that ||f||gy < o together with the BV
norm is a Banach space of great utility and versatility.

TV (f)= [, |Df| (= Jo|Of| when f € Cl) is the Total Variation of f.
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. a bit more: level sets and feature scale dependence

TV (u) can be also computed as an integral over level sets:

TV(u):/Q|Du|dxdy=/RL(u,r)dr

where

L(u,r) = length of the boundary of the r-level set.
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Total Variation Regularization

Now we consider the image recovery problem and the role that
optimization and total variation play in regularized reconstruction
from projections.

A common regularization of the radiographic image reconstruction
problem is the use of the L? norm to regularize the inverse problem.

Uoptimal = arg muinF(u) = arg muin (||Pu — d||2+ ||u||2)

where P is the radiographic projection operator and d is the
radiographic data. Another regularization is given by the
minimization:

Uoptimal EargmuinF(u) :argmuin (||Pu—d||2+/ |Du|2>
Q

But, as noted above, the |(Ju|? is biased against edges, while |(u] is
biased neither for nor against edges. This leads us to consideration of:

uoptima.zargmuinF(u):argmuin <||Pu—d||2+/ |Du|>
Q

So we end up with the following continuous functional and it's
discrete counterpart:

F(u) = AllPu—d|+ [ |0u

21



F(u) = Al[Pu—d[+ 3 [0 jul
1]
where [J; j is the discretized gradient. For specific choices of A we

implicitly seek solutions constrained by ||Pu—d|[> = a?).

Technically speaking, we need the discretized functional to be strictly
convex and coercive for guaranteed existence and uniqueness. It also
permits us to prove linear convergence.
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A picture: two cylinders

Recalling our pictures of the Lagrange Multipliers and specializing
them to our functional F(u):

positive span of u = (1,1,1,...,1)*—\ p

|Pu-d||%= o ./~

Level cylinder of TV(u

23



.................




A fixed point method

If we compute the derivative of the functional
F(u)= 0 jul + S |Pu—d| 2
(W) =3 [ijul+ 5lPu—d]

(where o = 2) and set it to zero, we get

a¥ O | )+PTPu—PTd 0
2.0 (|D.,u|

We turn this into an iterative method that (we can prove) converges
to a unique fixed point. The iterative method is given by

|:|. .
aZD[J( 'Juk+l>+PTPuk+1—P d=0
5]

At each step we solve for Uy, 1 using a conjugate gradient method. A
last modification to remove the singularity in derivative of the TV
term is done by noticing that

|0u| = +/|0Ou|? ~ /|0ul?2+B

for small 3.
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Initial Results: BCO4

This data was taken at LANSCE. The work is part of an ongoing
project with Tom Asaki, David Strong, and Patrick Campbell.

Now we show preliminary results obtained by total variation
minimization using the fixed point method. The results were obtained
using our own hacks of Pep Mulet's ImageTool, a matlab package.
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BCO4 Results: continued
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BCO4 Results: continued
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Example: Nonlinear Diffusion and Robust
Statistics

One approach to image regularization: Let the measured image d be
the initial data (i.e. u(x,0) =d) and “run” the heat equation

ou
—0-(0
fromt=0tot=T.

Results:

1 u(x,T) is a smoothed version of the image with length scales
suppressed smaller than /T

2 An undesirable loss of edge information.

Another approach: Perona-Malik (1990) use the above with a
modified PDE,

au_

5 = 0 (9(/|0uf[)Bu)

where g, known as the stopping function, is chosen so as to suppress
the diffusion at locations with high gradients.
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Robust Estimation

Suppose we want to estimate a piecewise constant function from a
noisy version of that function.

Robust estimation approaches this problem by minimizing

min % Zw p(lu; —uil,0)
I JelN

where p is a robust error norm (think of a negative log likelihood)
with intrinsic scale O.

Idea Choose a norm such that differences above a scale o are given
less weight (or even much less weight).

We would at least expect the case where there is a separation in
scales between the noise and the discontinuities to respond well to
this strategy.

What is the relation between robust estimation and nonlinear
diffusion?
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The relatiop be_tween robust estimation and
nonlinear diffusion

Recall that in the case of nonlinear diffusion we are flow the image
according to:

au_

5 = 0 (9(/|0uf[)Bu)

and, noting that the continuous form of the robust estimation
problem involves the minimization:

min/ o(/|0u])dQ
u Jo

which can be rewritten (via gradient descent as:

ou < , Du)
- (1wl ey

so if we let g(s) = p’(s)/s we see that robust estimation is nothing
else than nonlinear diffusion and vice versa.
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Example stopping functions
Each set of three plots are g, Y, and p respectively:

Quadratic (normal)

e TV min

e Lorentzian

o Tukey

%
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Example
(from Black, Saprio, Marimont, and Heeger 1998)

Comparison of the Perona—Malik (Lorentzian) function {left) and the Tukey function (right) after SO0 merations.
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Summary

e | have introduced mathematical concepts important for careful
consideration of the variational and PDE approach to image
analysis.

e | introduced the TV minimization method with examples and then
showed that a nonlinear diffusion approach is a generalization of
the TV minimization approach. We briefly explored the relation to

robust estimation

There is much more, but that is the end of my lecture, after all:

The secret to wearying consists in saying everything

Voltaire
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